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Abstract

The abelian sandpile is a misleadingly simple construction with wide implications
for real-world phenomena. We allow sand to reside at one of many sites. When too
many grains of sand are added to one site, it topples over, spilling sand onto adjacent
sites, which may in turn topple. In this paper we will explore the most essential facts
about sandpiles, many of which are not immediate nor intuitive. We focus on facts
related to the recurrent states, which are those configurations of grains that can always
be reached by adding more grains to any existing sandpile. The structure of these
recurrent states is surprisingly regular. Later, we consider Dhar’s directed sandpile
model and determine that it exhibits self-organized criticality, which, roughly speaking,
is the property that adding a single grain causes very large avalanches of topplings to
occur surprisingly frequently. Self-organized criticality is perhaps the most important
feature of sandpiles with regards to applications, and at the end of the paper we will
discuss how failures of an electric grid might be modeled in terms of a sandpile, and
what might be implied about those electric grids by the comparison. In addition to facts
about sandpiles, we prove some more general facts, one related to quotient groups of
integer vectors and several related to random walks, which are usually taken for granted
in sandpile literature.

1 Definition and Basic Properties of the Abelian Sand-
pile

A suitable precursor to the formal definition of a sandpile is a definition of the 2-dimensional
grid/lattice sandpile. The present state of the sandpile is a V × V grid. Associated with
each point on the grid is a number from 0 to 3 indicating how many grains of sand are on
that point. We may add grains of sand to any point. When we add a grain of sand to a point
with height 3, instead of incrementing the height to 4, we topple the site by resetting its
height to 0 and adding a grain of sand to each neighboring point. If some of the neighbors
were at height 3, additional topplings may be triggered, in what is called an avalanche.
When a site at the edge of the grid is toppled, the grains that would normally be added
to its neighbors are instead discarded, and thus it is possible for the number of grains in
the system to decrease as the result of adding a grain somewhere. Now, we move on to the
general definition of a sandpile, where we allow sites to be linked together arbitrarily and
even asymmetrically.

Now we define sandpiles in full generality. The definition we will use is most similar to the
one in [6]. Say there are V nodes/sites that sand can reside on. The state or configuration of
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the sandpile is a vector in ZV . If S ∈ ZV is a state vector, then S(i) denotes the i-th entry
in that vector. To describe how the sandpile behaves we define a matrix ∆ of size V × V .
A toppling at site i is denoted by Ti; when this occurs, the i-th row of ∆ is subtracted from
the state vector.

Definition 1.1. The i-th site of S is unstable if S(i) ≥ ∆ii. A state as a whole is unstable
if it contains any unstable sites.

Definition 1.2. A toppling at site i, denoted by Ti, is performed on a state S like so: For
every node k in S (including k = i), subtract ∆ik from the number of grains at that site.

Definition 1.3. A single toppling at no specific site, which I will denote as T ′ with no
subscript, is an operation where all unstable sites are toppled once.

For example, if sites i and j are unstable, then T ′ = TiTj . Since toppling at a single site
is simply vector addition (adding the state and a row of ∆ together), the ordering of the
individual site topplings is immaterial, so T ′ is well-defined.

Definition 1.4. A toppling at no specific site, which I will denote as T with no subscript,
is a multi-step operation wherein T ′ is applied repeatedly until the state is stable.

With only the facts presented thus far, it is clear that T will terminate, so the action of
T is not yet well-defined. However, when it does terminate, its action is well-defined (i.e.,
T is single-valued). The main fact about T is that it maps all states to stable states.

We also consider Ai, the operation of adding a grain of sand to site i, and then, most
importantly, the operation σi, which is equal to TAi (adding followed by toppling).

It is helpful to think of the sandpile as a directed graph where the i-th node is annotated
with ∆ii and the edge between the i-th and j-th nodes, if such an edge exists, is annotated
with −∆ij ; when a site topples, it sends grains to each node it has an outgoing edge to,
according to the value that edge is annotated with. In the restricted set of sandpiles where,
for all i and j, it is true that ∆ij = ∆ji (the matrix is symmetric), ∆ij ∈ (0, 1) (edges, when
they exist, are always annotated with 1), the graph can be considered undirected and ∆ is
almost equal to the Laplacian matrix of the graph. However, we will have ∆ii 6= −

∑
j ∆ij ,

for some i, for reasons to be explained below.
We will now introduce restrictions on the matrix ∆ which will ensure that T is well-

defined, specifically, that T always terminates.

Definition 1.5. A dissipative site is a site i such that
∑

j ∆ij > 0.

When a toppling occurs at a dissipative site, the total number of grains of sand in the
state decreases. Dissipative sites are necessary for T to terminate. Additionally, by counting
topplings at dissipative sites, one can measure the number of grains that leave the sandpile,
which is one way to quantify the size of an avalanche.

Proposition 1.6. Under the following restrictions on the ∆ matrix, the operation T always
terminates:

1. ∆ii > 0 for all i. I.e., no site topples when empty.

2. ∆ij ≤ 0 for all i and j. I.e., toppling never steals grains from neighbors.

3.
∑

j ∆ij ≥ 0 for all i. I.e., toppling never results in a net increase in grains.
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4. For every j, there is a list x1, . . . , xn with x1 = j and xn = i, where i is a dissipative
site and ∆xk,xk+1

6= 0 for all 1 ≤ k < n. I.e., the directed graph representing the
sandpile has a path from any given site to a dissipative site.

Proof. Suppose T does not terminate. Then there must be at least one site i that topples
infinitely many times. Let M be the distance (number of nodes in the shortest directed path)
from i to a dissipative site, which exists by restriction 4. Site i must have a neighbor j with
distance M −1 to a dissipative site. After some number of topplings at i, each neighbor of i
will overflow and topple as well; restriction 2 ensures there is no way to prevent this. Thus
j must topple an infinite number of times as well. Repeating inductively, the dissipative
site node i is linked to must topple infinitely many times.

By restriction 3, none of the toppling can increase the total number of grains in the state.
However, the infinite toppling at the dissipative site will decrease the number of grains in
the system. The definition of toppling prevents forces sites to have a nonnegative number
of grains, so eventually every site will have zero grains. Then, by restriction 1, the toppling
terminates, a contradiction.

QED

In light of this result, we will henceforth only consider sandpiles where the conditions
set out in the statement of the proposition are satisfied.

Notice that the restrictions do not force the graph to be connected. Some important
results in the field require connectivity, though not the ones in this paper.

Theorem 1.7. If Txn · · ·Tx1S = TS and Tym · · ·Ty1S = TS, and at no point during either
list of operations is a stable site toppled, then (x1, . . . , xn) is a permutation of (y1, . . . , ym).

Proof. It is true that site x1 is unstable in S, else it would not have been toppled first.
Thus, x1 ∈ (y1, . . . , ym), since the unstable site can only be made stable by toppling it at
some point. Commuting Tx1

to the front, we get:

Tym · · ·Tyk+1
Tyk−1

· · ·Ty1Tx1S = TS.

The property that no stable site shall be toppled is maintained. We can proceed
inductively on the remaining yi (for example, x2 must be unstable in Tx1

S, so x2 ∈
(y1, . . . , yk−1, yk+1, . . . , ym), and we commute it to the front, etc). This shows that there
is a one-to-one map from the xi to equal yi. Relabelling x and y then repeating the argu-
ment, there’s also a one-to-one map from the yi to equal xi. Thus there exists a one-to-one
correspondence between the two lists, which in this finite case is a permutation. QED

The following corollary justifies the term “Abelian Sandpile”.

Corollary 1.7.1 (Abelianness). From any starting state S, it is true that σjσiS = σiσjS.

Proof. Choose some (x1, . . . , xn), (y1, . . . , ym), k, and q such that

σjσiS = Txn
· · ·Txk+1

AjTxk
· · ·Tx1

AiS
σiσjS = Tym

· · ·Tyq+1
AiTyq

· · ·Ty1
AjS.

(1)

We can commute the terms around, since they are all simply vector addition, yielding

σjσiS = Txn
· · ·Tx1

AjAiS
σiσjS = Tym

· · ·Ty1
AjAiS.

(2)
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A stable site is never toppled in (2); after p many topplings have been applied in one
of the equations in (2), the state is the same as after p many topplings were applied in the
corresponding equation of (1), except for an extra grain at site i or j, and thus all sites which
were unstable at that point in (1) are still unstable, so if the toppling originally toppled an
unstable site, it still does. Therefore it is valid to apply Theorem 1.7, which completes the
proof. QED

2 Recurrent and Transient States

In this section we will explore the properties of the recurrent states, which are always
reachable and therefore of great interest when analyzing the long-term behavior of the
sandpile. The proofs in this section are mainly inspired by those in [6] and [7], with some
inspiration from [5] as well.

2.1 Essential Facts

Definition 2.1. A state R is recurrent if for any list x1, . . . , xn, there is another list
y1, . . . , ym such that (σyn · · ·σy1)(σxn · · ·σx1)R = R. A state that is not recurrent is tran-
sient. Define R as the set of all recurrent states.

The maximal state where every site is “fully loaded” is certainly recurrent. As it happens,
there are typically plenty of transient states too.

With what we’ve seen thus far, it may seem reasonable that the set of recurrent states is
disconnected in the sense that one could break the set of recurrent states into separate parts,
with no possible list of σns that causes a state in one part to become a state in another
part. However, this is not true; the recurrent states are globally accessible.

Proposition 2.2. Given any state S and recurrent state R, there is a list x1, . . . , xn such
that (σxn · · ·σx1)S = R.

Proof. We can define the maximal stateM whereM(i) = ∆ii−1 for all i. This is the state
where adding a grain anywhere will cause the state to become unstable. M is recurrent
because from any state (σn · · ·σ1)M, we can reach M by adding grains to each site i
until that site has ∆ii − 1 grains. Now suppose we are given an arbitrary state S and
arbitrary recurrent state R. Choose lists of x and y such that (xn · · ·x1)S = M and
(ym · · · y1)R = M . Since R is recurrent, there is another list (zq · · · z1)M = R, and then
(zq · · · z1)(xn · · ·x1)S = R as desired. QED

We now consider how recurrence interacts with individual σi operators, rather than all
possible combinations of them.

Definition 2.3. R is recurrent with respect to i with period n if σn
i R = R, and n is the

lowest number satisfying this equation.

Lemma 2.4. If there are two lists (x1, . . . , xn) and (y1, . . . , ym) such that (σxn
· · ·σx1

)R1 =
(σym

· · ·σy1
)R1 for some recurrent state R1, then (σxn

· · ·σx1
)R2 = (σym

· · ·σy1
)R2 for any

recurrent state R2.

Proof. Since the states are recurrent, there must exist a list (z1, . . . , zk) such that (zk · · · z1)R1 =
R2. Then
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(xn · · ·x1)R2 = (xn · · ·x1)(zk · · · z1)R1 = (ym · · · y1)(zk · · · z1)R1 = (ym · · · y1)R2.

QED

Theorem 2.5.

1. A state R is recurrent if and only if R is recurrent with respect to all i.

2. If recurrent state R1 is recurrent for i with period n, then any other recurrent state
R2 is also recurrent for i with period n.

Proof. First I will prove statement 1. Suppose we are given a state T that is not recurrent
with respect to i. Since there are a finite number of states, the sequence {σj

i T }∞j=0 contains

duplicates, i.e., there exist positive integers m and k such that σk
i T = σk+m

i T = σm
i σ

k
i T .

Thus the state σk
i T is recurrent with respect to i. We cannot bring a state that is recurrent

for i to a state that is not recurrent for i using σs, so there is no list of σs that will bring
σk
i back to T , and therefore T is transient. Since i is arbitrary, the “only if” direction of

the statement is proved.
Now suppose we are given a state R that is periodic for all i with periods ni for each.

My goal is to show that for any list σx1
, . . . , σxm

, there is another list of σs that will bring
(σxm

· · ·σx1
)R back to R. Indeed, the desired list is given by σn1−1

x1
, . . . , σnm−1

xm
, since

(σnm−1
xm

, . . . , σn1−1
x1

)(σxm · · ·σx1)R = σnm
xm
· · ·σn1

x1
R = R.

This proves statement 1.
Statement 2. follows from Lemma 2.4 with the first operation being σn

i and the second
operation being the empty/identity operation. QED

The preceding theorem implies that the period of recurrence for a certain site, among
the recurrent states, is well-defined. I will use per(i) to denote the period of i for recurrent
states. In light of these two propositions, [2] describes the structure of the set of recurrent
states as a multidimensional torus.

It becomes desirable to define σ−ni for n ∈ N (when n = 0, it adds no grains, so has no

effect). We only define this action on recurrent states. Then σ−1
i = σ

per(i)−1
i . Generalizing,

σ−ni = σ
per(i)−n
i . (If this last per(i)− n is negative, we can simply add a multiple of per(i)

until it is positive, which is equivalent to recursively expanding σ
per(i)−n
i until the exponent

is positive).
In light of the last paragraph, an inverse operation for any list of σs exists.

2.2 The Sandpile Group

Definition 2.6. The group G (we shall soon see it is a group) on R consists of all functions
R → R that can be realized by a list of σ operations. The group operation is function
composition.

To better understand this definition, recall Lemma 2.4, which states that any two op-
erations made out of list of σ which are equivalent with respect to one recurrent state are
equivalent with respect to all recurrent states. Thus, an f ∈ G which is realized by some
list of σs on a recurrent state R1 is realized by the same list of σs on all recurrent states.
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Proposition 2.7. The group G as defined is in fact a group.

Proof. Function composition is associative.
The composition of any two elements of G can be realized as the concatenation of two

lists of σs, which yields a list of σs, so G is closed.
The identity element, henceforth referred to as e, is realized by the empty operation

where no σs are applied (this operation can be realized by nontrivial lists of σs as well).
Inverses exist by the definition of a recurrent state (and I have previously described how

to realize them). QED

Lemma 2.8. For any i, then σ
∆i,V

V · · ·σ∆i,1

1 is a way to realize e (the identity element of
G).

Proof. The operation σ
∆i,i

i will appear in σ
∆i,V

V · · ·σ∆i,1

1 . Applying σ
∆i,i

i will always cause
exactly one toppling at site i, and will ultimately leave site i at the same height. Thus, the

only net effect of σ
∆i,i

i is its effect on neighboring sites, specifically, σ
∆i,j

j for all neighboring

sites j. But σ
∆i,V

V · · ·σ∆i,1

1 contains exactly the inverse of all those operations, and therefore
acts as identity on recurrent states. QED

Lemma 2.9. The group G has the same cardinality as R. I.e., |G| = |R|.

Proof. Fix some R0 ∈ R. Define R′ = {gR0 : g ∈ G}. See that |R′| = |G|; certainly
|R′| ≤ |G|, and the only way for |R′| < |G| to hold is if g1R0 = g2R0 for some g1, g2 ∈ G.
But then g1 and g2, having the same effect on some recurrent state, would be the same
function (see Lemma 2.4). Thus, our task is reduced to showing |R′| = |R|.

First, since all recurrent states are accessible, there is certainly a list of operations from
R0 to any other recurrent state, and the function performing that list of operations is in G,
and therefore R′ ⊃ R.

As for R′ ⊂ R, we argue by contradiction. Suppose there is a state S ∈ R′ \R. Then
there must be a g ∈ G such that S = gR0. But that g is realizable via σs, and no list
of σs can bring a recurrent state to a non-recurrent state, so S ∈ R, contradicting our
assumption. QED

Lemma 2.10. The group G is isomorphic to the quotient group ZV /∆>ZV (under vector
addition), where ∆>ZV = {∆>v : v ∈ ZV }.

Proof. First, we’ll construct a surjective homomorphism from ZV → G. Then we’ll know G
is isomorphic to the quotient of ZV and the preimage of e (the identity element of G) under
the homomorphism.

The homomorphism is quite simple: Let φ(z) : ZV → G simply map to the function in
G that is realized by σzV

V · · ·σ
z1
1 , where zi is the i-th element of the vector z. The map φ is

surjective, since every element of G is realizable. Furthermore, with the group operation on
ZV being vector addition, the map φ is a homomorphism:

φ(z + w) = σzV +wV

V · · ·σz1+w1
1 = σzV

V · · ·σ
z1
V σ

wV

V · · ·σw1
1 = φ(z)φ(w).

It is well-known in algebra that, if one has a surjective homomorphism f : A → B and
fC = e (the identity in B), then A/C ' B (where ' denotes isomorphism). Thus, to
proceed we seek out the preimage of e under φ, which I will call E. I claim E = ∆>ZV .

First I will show E ⊃ ∆>ZV . Take an arbitrary v ∈ ∆>ZV . Denote the i-th row of ∆
as ∆i. Then v = ∆x1

+ · · ·+ ∆xn
for an appropriate vector x. Since φ is a homomorphism,
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then φ(v) = φ(∆x1) · · ·φ(∆xn). Each of these is identity per Lemma 2.8, and therefore
φ(v) = e and v ∈ E.

Next, I show E ⊂ ∆>ZV . Take an arbitrary element z ∈ E. We know z ∈ ZV . We can
decompose z as z+ − z− with z+

i ≥ 0 and z−i ≥ 0 for all i. Since the operation φ(z) = e,
then φ(z+)φ(−z−) = e and φ(z+) = φ(−z−)−1. The elements of −z− are the exponents
of σs in φ(−z−)−1, so we have φ(−z−)−1 = φ(z−), since inverting the exponents on every
σ in the realization of the function has the effect of inverting the function. Therefore, for
any recurrent state R0, we have φ(z+)R0 = φ(z−)R0. Using the definition of φ and then
equation (2), which indicates that the additions and topplings involved in a list of σ can be
separated,

φ(z+)R0 = R0 + z+ −∆>v

φ(z−)R0 = R0 + z− −∆>w

For the appropriate vectors v and w, which record how many times each site toppled
during application of φ(z+) or φ(z−) respectively. But the two right expressions are equal,
so z+ −∆>v = z− −∆>w, and rearranging further, z+ − z− = ∆>(v − w), i.e., z+ − z−
is in the span of the rows of ∆ and thus z ∈ E. Since z was arbitrary, we conclude
E ⊂ ∆>ZV . QED

The following lemma is fairly well-known, and is usually proved using the Smith Normal
Form of a matrix. However, as suggested briefly in [7], it is possible to prove the lemma
using almost no facts about matrices, as we will do here.

Lemma 2.11. For any N ×N nonsingular integer matrix A, the cardinality of the quotient
group ZN/AZN is equal to |detA|.

If A is singular, then |ZN/AZN | =∞.

Proof. If A is singular, then A⊥ is nonempty. We can choose infinitely many distinct cosets
of AZN along any vector in A⊥, proving the special case of the lemma.

The general idea of the proof is to take a large hypercube in ZN and tile it as full as
possible with copies of the parallelepiped formed by the columns of A, then notice that the
sum of the volumes of the tiled parallelepipeds approaches the volume of the cube as the
cube becomes large.

Let Pp be the parallelepiped formed from the columns of A and with its “bottom-left”
point being p, which is a point in ZN ; specifically, from p, we form Pp by creating edges
from p where each edge, as a vector, is a column of A (the remaining edges and points are
well-defined). A point x ∈ ZN belongs to a Pp if x is in the interior of Pp or if x lies only
on side(s) of Pp that is directly connected to p (i.e., if x lies on the “bottom left” of Pp).
Figure 1 may clarify the definition of belonging.

Define the lattice volume of Pp, also latticeVolume(Pp), to be the number of points of ZN

belonging to PP . It is quite intuitive that latticeVolume(Pp) = |ZN/AZN |; it is possible to
reach any point in ZN by adding some linear combination of the columns of A to some point
in Pp, and there is no nontrivial linear combination of columns of A which when added to
one point belonging to Pp yields a different point also belonging to Pp. I take it for granted
that volume(Pp) = |detA|. Let

Φ = {PAv : v ∈ ZN}.
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p

Figure 1: The red points belong to Pp. Note there are 10 red points, equal to the area of
the parallelogram. Showing these values are always equal is the main challenge of the proof.

(the Av denotes matrix multiplication between A and v). I.e., Φ is the set of paral-
lelepipeds that start at points in the column space of A. Notice that the elements of Φ cover
ZN and have non-overlapping interiors; i.e., Φ tiles ZN .

Let Cn be the cube [0, n]N . Define lattice size for Cn in the same way as for the
parallelepipeds, except using the origin as the point that determines which sides are “bottom-
left” sides of Cn. Notice that the volume of Cn is equal to its lattice size, both nN . This
connection enables the rest of the proof. Let Φn be the subset of Φ such that all the
parallelepipeds in Φn are in Cn (touching on the boundary is allowed). One more definition:
Let m be a constant large enough so that any of the parallelepipeds could fit inside a cube
with side length m.

Once n > 2m, then the hypercube [m,n − m]N will be entirely covered by Φn. This
is because any parallelepiped in [m,n −m]N will have additional parallelepipeds attached
to all of its sides, since there is certainly enough room left in Cn for such parallelepipeds.
Figure 2 may clarify the geometry of Cn. Therefore,

volume(Cn)−
∑

P∈Φn

volume(P ) ≤ nN − (n− 2m)N

latticeVolume(Cn)−
∑

P∈Φn

latticeVolume(P ) ≤ nN − (n− 2m)N

The largest powers of nN − (n− 2m)N will cancel out, so nN − (n− 2m)N ∈ O(nN−1)
(with n being the variable). Then, subtracting the above equations, we get∑

P∈Φn

volume(P )−
∑

P∈Φn

latticeVolume(P ) ∈ O(nN−1).

We can rewrite as

|Φn|(|detA| − |ZN/AZN |) ∈ O(nN−1)

But |Φn| grows as nN , the volume of Cn, so we conclude that

lim
n→∞

|detA| − |ZN/AZN | = 0

But the expression does not depend on n, so is simply zero, i.e., |ZN/AZN | = |detA| as
claimed. QED
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n

n

n− 2m

m

m

Figure 2: Geometry of the proof. The outer square is Cn. Notice that the central (n −
2m)× (n− 2m) square is covered by red parallelograms. As n→∞, the area in the margin
becomes negligible as a fraction of the total area of Cn, and thus the difference between
geometric area and lattice area per parallelogram approaches zero.

Theorem 2.12. The number of distinct recurrent states is equal to |det ∆|.

Proof. There is a one-to-one correspondence between recurrent states and elements of ZV /∆TZV ,
and the latter has cardinality |det ∆|. QED

We have arrived at this result by showing that the cardinality of ZV /∆>ZV and the cardi-
nality of R are equal, but have not shown an isomorphism between the two. An isomorphism
does in fact exist. Specifically, ZV /∆>ZV is isomorphic to R with the group operation on
the latter being R1 ◦ R2 = T (R1 +R2). Furthermore, each element of ZV /∆>ZV contains
exactly one recurrent state, the one it maps to under the isomorphism. We will not prove
these facts.

As an alternative to the way we developed Theorem 2.12, it is possible to prove that each
coset in ZV /∆>ZV contains exactly one recurrent state by directly analyzing the sandpile
dynamics, as performed in [5].

Corollary 2.12.1. The matrix ∆ is nonsingular.

3 Self-Organized Criticality and the Directed Sandpile
Model

3.1 Preliminaries

One of the main motivations for studying abelian sandpiles is that they exhibit self-organized
criticality. I will not attempt a thorough definition of self-organized criticality here. One
attribute of critical systems is that the expected value of the size of events that result from
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random impulses diverges. In the case of sandpiles, a possible interpretation is that the
expected number of sites toppled due to the addition of a grain of sand should diverge.

In a finite sandpile, the expected value of any metric of avalanche size will converges, since
the sum that defines the expected value will be finite. However, as the size of the sandpile
becomes large, so does the expected value (for most reasonable metrics of avalanche size).
It is also possible to formalize an infinite sandpile where the expected value diverges more
naturally.

The most common probability distributions which exhibit self-organized criticality fea-
ture powers of x between -1 and -2. In this range, the expression for the expected value will
feature a sum of powers of x between 0 and -1, which will diverge.

Sandpiles are the canonical example of a system that exhibits self-organized criticality, so
it may come as a surprise that the exact coefficients of the power laws describing avalanche
sizes are still unknown. Additionally, not all sandpiles exhibit criticality. Researchers typi-
cally study sandpiles on lattices with dimension from 2 to 4 for this reason.

Shortly after sandpiles were formalized, a restricted version of the sandpile, the directed
sandpile, was developed by Dhar in [3]. In the directed model, the power law exponents are
much easier to calculate. This section is based on on ideas from [3] and [2], also by Dhar.

Definition 3.1. The 2-dimensional directed sandpile is a restricted version of the sandpile.
The nodes of the graph of the sandpile are (x, y) where 0 ≤ x + y ≤ N and 0 ≤ y ≤ N .
Every node (x, y) has directed edges to (x + 1, y) and (x, y + 1) (if those points are still in
the sandpile), and each edge is annotated with 1 (the number of grains sent along that edge
during a toppling). Each node (x, y) where y 6= 0 and y 6= N is annotated with 2 (i.e.,
∆ii = 2), and each node where y = 0 or y = N is annotated with 1.

I.e., all sites topple when they reach height 2, and they send grains to their upper and
right neighbors only. Notice that the nodes where x + y = N are dissipative, since they
have no outgoing edges, but still lose 2 grains when they topple. The exact locations of the
dissipative sites are not of importance – in the analysis that follows, we will assume N is
large enough so that the avalanche of interest does not reach any dissipative sites.

In the context of self-organized criticality, we are primarily concerned with the long-term
behavior of the sandpile when grains are repeatedly added to the sandpile at sites that are
chosen uniformly randomly. In the long-term, the sandpiles will always reach a recurrent
state. I.e., if s(t) denotes the state of the sandpile after t grains have been randomly
added (from any starting state), then limt→∞ P(s(t) ∈ R) = 1. (This isn’t strictly true for
sandpiles as defined in part 1 – some additional connectivity requirements are necessary.
One possibility is requiring that there exactly one dissipative site).

The following definition will be valuable for reasoning about avalanches.

Definition 3.2. Let Li, the i-th level set of a 2-dimensional directed sandpile, be the set of
sites in the sandpile for which x + y = i. Let Lij or Li,j be the unique element of Li that
has x = j.

In the long-term behavior of a generic sandpile, we usually consider the behavior when
grains are repeatedly added to uniformly randomly selected sites. In the long-term behavior
of a directed sandpile, we restrict this and instead add grains uniformly randomly into L0

only. Under this restriction, grains only move through the other level sets due to avalanches
started in L0, which will be important later.
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L3,3
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L3,5

L3,6

L4,4

L4,5

L4,6

L4,7

Figure 3: A subset of a 2-dimensional directed sandpile. The red dots belong to the level
set L3 and the blue dots belong to L4.

Lemma 3.3. In the long term behavior of the (directed or undirected) sandpile, it is equally
likely to be in any of the recurrent states. I.e., if s(t) is the state of the sandpile after t grains
have been added randomly, and s(0) ∈ R, then for any R ∈ R, we have P(s(t) = R) = 1/|R|.

I will not prove this lemma, despite its importance. It is related to Theorem 2.5. A
proof can be found in [6].

Lemma 3.4. The sets of recurrent and stable states are equal for 2-dimensional directed
sandpiles.

Proof. I will describe a procedure to reach the empty state from any state by applying a
list of σs. This will be sufficient to prove the lemma, for we can reach any stable state from
the empty state by adding grains.

Let m be the smallest integer such that Lm is not empty. Add grains to sites in Lm until
all of them have toppled exactly once; then all the sites in Lm will be empty. Repeat for
Lm+1, Lm+2, etc. for all non-empty level sets. Since a toppling in Li does not affect other
sites in any Lj , j ≤ i, at the end of this procedure the state will be entirely empty. QED

Lemma 3.5. Given a uniformly randomly selected recurrent state of a 2-dimensional di-
rected sandpile, there is an equal probability for any given site to have zero grains or one
grain, even if we have knowledge about the number of grains at some other sites.

Proof. Given a site i, there are an equal number of stable states where that i is empty and
where that i has one grain. This remains true if we restrict the set to stable states where
some other sites have a fixed number of grains. Since the set of recurrent states is equal to
the set of stable states, and all recurrent states are equally probable, we are done. QED

3.2 Random Walks

Next, we develop several facts about probability that will aid us greatly. The essence of the
proofs in this subsection are based on Chapter III of [4].

A random walker, informally, is a person who starts off at the origin, then, at fixed
intervals, randomly steps forwards or backwards.
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Definition 3.6. A path of a 1-dimensional random walker is a function γ(t) defined on
t = 1, 2, . . . . Paths are constrained so that γ(t) = γ(t − 1) ± 1. Unless otherwise noted,
γ(0) = 0. The notation γt = ±1 indicates γ(t + 1) − γ(t), i.e., which direction the walker
walked at time t.

There are 2n possible paths for a walker that takes n steps.

Definition 3.7. Let N(n, x) (defined for integers x and n ≥ 0) be the number of possible
paths γ for a 1-dimensional random walker satisfying γ(n) = x.

Proposition 3.8.

N(n, x) =


(

n
n+x

2

)
n+ x is even

0 otherwise

Proof. If n is odd, then γ(n) is odd, and if n is even, then γ(n) is even. But if n+ x is odd,
then n and γ(n) would have different evenness for any valid choice of path, so N(n, x) = 0.

Now I assume n + x is even. Let p denote the number of distinct integers t such that
γt = +1 and q similarly for −1. Then x = γ(n) =

∑
γt = p − q and n = p + q. We

get N(n, x) = N(p + q, p − q) =
(
p+q
p

)
=
(
n
p

)
, as this is the number of ways to distribute

p many +1s into a path of length p + q. Finally, we have n+x
2 = (p+q)+(p−q)

2 = p, so
N(n, x) =

(
n

(n+x)/2

)
. QED

Lemma 3.9 (The Reflection Principle). Let P be the set of paths γ satisfying γ(0) = x0 > 0
and γ(n) = x1, and γ(i) = 0 for some 1 ≤ i ≤ n. Let Z be the set of paths γ satisfying
γ(0) = −x0 and γ(n) = x1, for the same x0 and x1. Then |P | = |Z| = N(n, x0 + x1). In
words, the number of paths from x0 to x1 which touch zero is equal to the total number of
paths from −x0 to x1.

Proof. First, |P | ≤ |Z|. For every γ ∈ P , there is a minimal y satisfying γ(y) = 0. Define a
path ζ that starts at −x0 and has ζi = −γi for 0 ≤ i < y then ζi = γi for i ≥ y. Certainly
ζ(n) = x1, since γ(t) and ζ(t) agree on t ≥ y, so ζ ∈ Z. Furthermore, each γ ∈ P maps to
a distinct ζ ∈ Z, so |P | ≤ |Z|.

Secondly, |Z| ≤ |P |. For every ζ ∈ Z, there is a minimal y satisfying ζ(y) = 0. We can
define γ the way we defined ζ in the preceding paragraph, and each ζ maps to a distinct γ,
so |Z| ≤ |P |.

The equality |Z| = N(n, x0 + x1) is immediate from the definition of Z. QED

The probability of a random walk starting at the origin returning to the origin after n
steps is given simply by N(t, 0)/2n, the number of paths returning at time n divided by the
total number of paths of length n. Somewhat more difficult is the following:

Theorem 3.10. For nonnegative even integer n, there are

1

n− 1

(
n
n
2

)
(3)

many paths that return to the origin for the first time after exactly n steps. The proba-
bility of a random path starting at the origin returning to the origin for the first time at the
n-th step is
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1

n− 1

(
n
n
2

)
1

2n
. (4)

Proof. Let γ be an arbitrary path that returns to the origin for the first time at n. For
now we will assume γ0 = +1, i.e., the walker’s first step is upwards. Then it must be that
γn−1 = −1 (at time n−1, the walker cannot be at or below the origin, so much be just above
it). In this way the problem is reduced to finding the number of paths of length n− 2 from
+1 to +1 that do not touch zero. Using Lemma 3.9, this is equal to N(n−2, 0)−N(n−2, 2).
The expression can be rewritten:

N(n− 2, 0)−N(n− 2, 2) =
(n− 2)!(

n
2 − 1

)
!
(
n
2 − 1

)
!
− (n− 2)!(

n
2

)
!
(
n
2 − 2

)
=

n
2

n
·

n
2

n− 1
· n!(

n
2

)
!
(
n
2

)
!
−

n
2 − 1

n− 1
·

n
2

n
· n!(

n
2

)
!
(
n
2

)
!

=

( n
2

n
·

n
2

n− 1
−

n
2 − 1

n− 1
·

n
2

n

)(
n
n
2

)
=

1

2

( n
2

n− 1
−

n
2 − 1

n− 1

)(
n
n
2

)
=

1

2

(
1

n− 1

)(
n
n
2

)
Recall, this is the number of paths that return to the origin for the first time at the n-th

step and whose first step is upwards. We multiply by 2 to account for paths whose first step
is downwards, yielding (3). Finally, we divide by 2n, the size of the sample space, which
yields (4). QED

To describe (4) asymptotically, we invoke Stirling’s formula, a tool for approximating
factorials. Specifically, we will use

n! ∼
√
n
(n
e

)n
= nn+1/2e−n

Where ∼ denotes that the limit of the ratio between the two sides approaches a constant
(not necessarily 1) as n→∞. In the case of Stirling’s formula, the constant is

√
2π, but is

not of importance to us. Using Stirling’s formula, we get(
2n

n

)
1

2n
=

(2n)!

(n!)2
∼ (2n)2n+1/2e−2n

(nn+1/2e−n)2

1

22n
=

22n+1/2n2n+1/2e−2n

n2n+1e−2n22n
∼ 1√

n

Accounting for the extra 1/(n− 1) factor in (4), we get the following:

Proposition 3.11. The equation (4) is asymptotically proportional to t−3/2, in the sense
that (4) divided by t−3/2 approaches a constant as t→∞.

3.3 Avalanche Exponents for the Directed Sandpile

Now we consider how avalanches progress in the directed sandpile.
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Figure 4: An example of how an avalanche might progress through a directed sandpile.
After the blue dots topple, the green dots must also topple, and the red dots topple with
probability 1/2. Notice that the set of toppled dots on any level set will always be contiguous.

Lemma 3.12. In the toppling resulting from a single σ operation on the directed sandpile,
for each i there exist m and M such that the sites Li,j, m ≤ j ≤ M are exactly the sites
that topple in Li. I.e., the toppled sites in any level set are contiguous.

Proof. We proceed by induction. Certainly the statement is true for the level set Li contain-
ing the site of the σ operation, since there is at most one toppling there. Now we consider
an arbitrary level set Lj and assume the lemma statement holds for Lj−1. Let m0 and M0

be the values of m and M for Lj−1. All the sites Lj,k for m0 < k ≤M0 will have incoming
directed edges from Lj−1,k−1 and Lj−1,k, which both toppled, so Lj,k will topple also. The
sites Lj,m0 and Lj,M0+1 each have one incoming directed edge from a toppled site in Lj−1,
so by Lemma 3.5 these two sites have a 1/2 chance of toppling. Any site in Lj not yet
mentioned has no incoming link from a toppled site and thus won’t topple.

Therefore, if Lj,m0
topples, let m1 = m0, else m0+1. If Lj,M0+1 topples, let M1 = M0+1,

else M0. As described in the last paragraph, all sites in Lj between these two will topple,
and none outside will topple. QED

Thanks to the preceding lemma, we can characterize the effect of a σ operator on each
level set by a single integer, the number of sites toppled on that level set.

Definition 3.13. Let δ(i) be the number of topplings on Li as the result of some σ operator
on some directed sandpile state.

Lemma 3.14. During a toppling due to a σ on a random directed sandpile, if δ(i) > 0,
then

P(δ(i+ 1) = δ(i)) =
1

2
(5)

P(δ(i+ 1) = δ(i) + 1) = P(δ(i+ 1) = δ(i)− 1) =
1

4
(6)

14



Proof. As we saw in the proof of Lemma 3.12, if sites Li,m0 through Li,M0 topple, then sites
Li+1,m0+1 through Li+1,M0 also topple. There are δ(i)− 1 such sites. The only other sites
in Li+1 that may topple are Li+1,m0

and Li+1,M0+1, each with 1/2 probability. If neither
topples, then δ(i+ 1) = δ(i)− 1, and this happens with probability 1/2 · 1/2 = 1/4. If both
topple, then δ(i + 1) = δ(i) + 1, with the same probability. Finally, if one topples and the
other does not, which occurs with probability 1/2, then δ(i+ 1) = δ(i). QED

Now we show that the “width” δ(i + t) of the avalanche behaves like a random walker.
This is intuitive if we think about each edge of the avalanche being controlled by a random
walker who instructs each edge to widen or shrink as the avalanche progresses from one level
set to the next. Rather than formalizing a notion of two walkers, we will model the width
as a single walker who takes two steps at a time.

Definition 3.15. An annihilating walker is a random walker who stops moving after reach-
ing the origin.

Lemma 3.16. Let γ be a uniformly randomly selected path of an annihilating walker who
started at x = 2. Suppose that σ was applied to a site in L0 and caused that site to topple.
Then P(δ(t) = x) = P(γ(2t)/2 = x).

Proof. The statement is true for t = 0, since δ(0) = 1 and γ(0)/2 = 1 certainly. Now let
t > 0 be arbitrary and assume the statement for t − 1. Also assume δ(t − 1) > 0. Then
P(δ(t) = δ(t − 1)) = 1/2 by Lemma 3.14, and P(γ(2t)/2 = γ(2t − 2)/2) = 1/2, since for
γ(2t) = γ(2t − 2) the walker must have one step up then one step down, with probability
1/4, or one step down then one step up, with probability 1/4, summing to 1/2. Continuing,
P(δ(t) = δ(t − 1) + 1) = 1/4, and P(γ(2t)/2 = γ(2t − 2)/2 + 1) = 1/4, because the walker
must have made two steps up for γ(2t) = γ(2t− 2) + 2 to hold. The same argument shows
P(δ(t) = δ(t− 1)− 1) = 1/4 = P(γ(2t)/2 = γ(2t− 2)/2− 1).

Now we do away with the assumption δ(t − 1) > 0. If δ(t − 1) = 0, then δ(t) = 0
certainly since topplings cannot occur spontaneously. Similarly, if γ(2t − 2) = 0, then
γ(2t) = 0 because the walker is annihilating.

Since P(δ(t) = x) is entirely determined by the probabilities P(δ(t−1) = y), which by the
inductive hypothesis are equal to the corresponding probabilities on γ, and the probabilities
P(δ(t) = x|δ(t − 1) = y), which I showed in the previous paragraphs to be equal to the
corresponding probabilities on γ for all relevant values. QED

We say the avalanche started by a σ in Li ends at the lowest t satisfying δ(i + t) = 0.
With the preceding lemma in hand, we see that the probability of the avalanche ending at
t is equal to the probability of a random walker starting at x = 2 first reaching the origin
at 2t.

Lemma 3.17. If a σ in L0 causes a toppling, then the probability of the avalanche ending
at t is

1

2t+ 1

(
2t+ 2

t+ 1

)
1

22t+2
(7)

Proof. Consider the possible paths of a walker who starts at x = 0 as usual and returns to
the origin for the first time at the n-th step, with n > 2. In all such paths γ, it must be
that γ1 = γ2, else the walker would return to the origin after exactly two steps. Hence half
of the valid paths γ have γ(2) = 2 and the other half have γ(2) = −2.
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That is, the number of paths starting from x = 2 which reach the origin for the first
time at step n is equal to half the number of paths from the origin that return to the origin
for the first time at n+ 2 as given by (3). Specifically:

1

n+ 1

(
n+ 2
n+2

2

)
1

2
.

The sample space is paths of length n, since n steps occur from reaching x = 2 through
reaching the origin. Therefore, the probability of a walker starting at x = 2 first reaching
the origin at time n is

1

n+ 1

(
n+ 2
n+2

2

)
1

2n+1

The probability of the avalanche ending at i + t is equal to half the probability of the
walker starting at x = 2 first reaching the origin at step 2t, per Lemma 3.16. Substituting
n = 2t then dividing the above equation by two yields (7). QED

The asymptotic estimate in Proposition 3.11 applies to equation (7) as well.
The discussion that follows is fairly close to what may be found in [2], and serves as the

reasoning behind the final theorem. It is quite informal.
What’s more interesting than the number of level sets that an avalanche affects is the

total number of sites that topple in an avalanche. This is what we call the size of an
avalanche. The ultimate goal of this section is to determine the probability that an avalanche
will have a certain size.

We could calculate the average size of an avalanche based on its duration using more
probability about random walks, but it’s more elegant to use a law about sandpiles instead.
Seeing as the sandpile is finite, there is some maximum number of grains it may contain.
The only dissipative sites are at x + y = N , i.e., in the “last” level set. The only way for
grains to get from L0, where they are added, to LN , where they exit, is to pass through
every level set. Therefore, the total number of grains entering and exiting each level are
asymptotically equal as more grains are added. Equivalently, the number of topplings in
any given level set asymptotically approaches half the total number of grains added to the
sandpile (since each toppling causes two grains to leave the level set).

We will now formalize the ideas of the preceding paragraph. Let D be the duration
(number of level sets affected) of an avalanche. Let layerToppleCount(i) be the expected
number of topplings in Li that an avalanche causes given that the avalanche reaches Li

(causes at least one toppling in Li). Then, if t grains are added, it must be that:

2 · layerToppleCount(i) · P(D > x) · t ∼ t (8)

Specifically, layerToppleCount(i) · P(D > x) must approach 1/2 as many grains are
added. To determine the asymptotic behavior of P(D > x), we recall from Proposition 3.11
that the probability of an avalanche ending at Li grows like i−3/2. As the sandpile is large,
we can use

P(D > i) ∼
∫ ∞
i

x−3/2dx ∼ i−1/2

Then, by (8), it must be that layerToppleCount(i) ∼ 1/P(D > i) ∼ i1/2. Let us
now define S, the previously discussed size of an avalanche, or more specifically, the total
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number of sites toppled during an avalanche. Let Si be the expected value of S given that
the avalanche ends at level set i. Then we have, roughly,

Si ∼ layerToppleCount(i) · i ∼ i3/2

(The number of layers toppled times the number of sites toppled per layer). Our goal
is to find P(S = x). First, we focus on P(S > x). Notice that when D > x, we can expect
S > x3/2, and therefore, if we want P(S > x), we should look for conditions on P(D > x2/3).
We know that P(D > i) ∼ i−1/2, so P(S > x) ∼ P(D > x2/3) ∼ x−1/3. Then, assuming the
sandpile is large enough, P(S = x) is like d

dxP(S > x) ∼ x−4/3.

Theorem 3.18. In the two-dimensional directed sandpile model, in a uniformly randomly
selected recurrent state, the probability of t many sites toppling due to a σ operation in L0

varies like t−4/3 as t→∞.

4 Application to Electricity Grids

In 2003, the worst North American electricity blackout in recent history started in Ontario
before quickly spreading to much of the eastern seaboard. The cause wasn’t a nuclear
meltdown or an unprecedented solar flare. Instead, a medium-size coal plant unexpectedly
went offline. The plant wasn’t small, but neither was it so large that its failure should
have overwhelmed the rest of the grid. Many other components of the grid were operating
near maximum capacity, so the increase in long-distance current caused some transmission
lines to overheat, fall onto trees, and disconnect, putting even more load on the remaining
transmission lines. In other words, the grid was near criticality, so a relatively small event
was able to trigger a devastating avalanche of events. In this section, I’ll provide a simple
model of an electrical grid as a sandpile, as suggested in [1].

Each grain of sand represents some unit of “load” on the electricity grid. For example,
a transmission line that is near capacity may merit several grains of sand. Pieces of infras-
tructure that are geographically near and are affected by one another have nonzero ∆ij ,
representing that when a piece of infrastructure fails, nearby pieces of infrastructure are the
ones that must immediately handle the load. When a site topples, it represents the failure
of a node, for example a transmission line that contacts a tree and then disconnects.

It’s a bit harder to explain the dissipative sites. After all, when a grid recovers from a
blackout, it is not immediately significantly more robust than it was before the blackout, so
one would expect there to be the same number of grains in the same places. However, we
make the observation that after an electrical blackout, grid operators usually significantly
upgrade the systems that caused the fault, install new systems to better balance the load,
and set in place new protocols to help decrease the risk of future blackouts. The scale of
these improvements is usually correlated to the seriousness of the blackout. Thus, after a
large “toppling”, the “number of grains” (effective load on the grid) does in fact decrease.

As sandpiles exhibit self-organized criticality, and we can roughly model an electrical
grid with a sandpile, one might expect most electrical grids to naturally be near criticality,
where blackouts ranging from very small to effectively infinitely large can result from very
small impulses, such as the failure of a coal plant in the case of the 2003 Ontario blackout.
The authors of [1] empirically discovered that the size of electrical blackouts between 1993
and 1998 varied approximately with a power law with the exponent in the critical range,
which is typical of a system exhibiting self-organized criticality.
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